
Azure DevOps Simplified with Production Data

Paul Stanton, Co-founder Windocks
pauls@windocks.com

mailto:pauls@windocks.com

Three choices in SQL Server DevOps, and which CI server?

1. Build DBs from source, or use DB Clones w/migration scripts?

• Source DB Clones from SQL Backups, Cloud storage, or storage arrays

2. Git or Git plus DB Source control (Red Gate, Liquibase, etc.)?

3. SQL Server containers or instances?

And, Azure DevOps, Jenkins, Team City, or other CI server?

This session: DB clones, Git w/migration scripts, Azure DevOps.
We’ll use containers and discuss pros/cons of Instances.

SQL DevOps Simplified with Production DBs

Options for DB clones with Azure DevOps

• Windocks: SQL Server DB clones for containers or instances

• Red Gate SQL Clone for instances

• PowerShell scripting

Why use DB clones?

• DB clones are a superior artifact, for higher quality releases

• Support multi-database environments (multiple DB builds are
complex and slow)

• Faster, more reliable process compared to DB builds

SQL DevOps Simplified with Production DBs

Plan for high volume CI testing

Shared Database, often
with “build and compare”

Code generation

Infrequent updates to DB
environments, Duration of

environments can be
weeks or months

Containers + Clones + Git

Isolated, self-service,
devs are in-synch,

duration is days/weeks

Containers with Azure DevOps

50 Containers/VM, 30 sec build,
configured on delivery, duration of

minutes, w/minimal build queue

Instances + Clones + Git

Isolated, self-service,
devs are in-synch,

duration is days/weeks,
Instance maintenance?

Instances with Azure DevOps

Provision N instances?
• multi-db environments?
• configuration drift
• Longer build queues & higher cost
• VM maintenance

Isolated/Manual Automated Multi-Stage Testing

Shared/Manual

A PowerShell script concatenates and orders migration scripts to
produce an “ordered” script (FeatureA.sql). Orderscripts.sql is
updated and committed for each migration script commit.

orderscripts.sql

Get-Content script1.sql, script2.sql, script3.sql | Set-Content FeatureA.sql

Migration script ordering and management

A dockerfile combines DB clone image with Git and script management. Each
container includes the database clone, a clone of the repo in the \scripts folder,
plus the “ordered” FeatureA.sql. Azure DevOps makes restful API calls to create
containers, run tests, and integrate with front-end apps.

FROM mssql-2017

SETUPCLONING Full customers \\path\to\backup

COPY datamasking.sql .

RUN datamasking.sql

ENV USE_DOCKERFILE_TO_CREATE_CONTAINER=1

RUN git.exe clone https://url/repo scripts

RUN powershell.exe scripts\orderscripts.ps1

Combining DB clones with migration scripts

//path/to/backup
https://url/repo

Control which scripts are applied at run time with Docker commands.
Azure DevOps restful API calls include this environment variable.

>docker create -e RUN=“scripts\script1.sql” <dbcloneimage>

>docker create <dbcloneimage>

>docker create -e RUN=“scripts\script1.sql, scripts\script2.sql” <dbimage>

Control use of migration scripts at run time

• DB clones are a superior artifacts for development than “built” databases

• Identify data and performance issues earlier

• Avoid DB build times, and support multi-database environments

• Combined with containers to realize additional benefits:

• greater speed

• reliability

• security

• And economy (scalability)

Advantages of DB clones in DevOps

• A “ready for use” Azure DevOps YAML file provided by Windocks

• ~2 minute Azure DevOps setup

• The same VM and pipeline that we used today

• Free: for short-term (2 week) experience . . .

• Interested in a personal lab longer-term? Download a free Windocks
Community edition server and continue indefinitely!

Download the YAML at: www.windocks.com/azure-devops

T2P3EO9B

Setup a personal Azure DevOps lab

http://www.windocks.com/azure-devops

