
Hadoop, Hive, and Big Data for

MSSQL Professionals

Ernest Libertucci

SQL Saturday South Florida 2019

Speaker Information

Senior Data Engineer

@elibertucci

linkedin.com/in/ elibertucci

Hadoop and HDFS

What is Big Data?

Scale Up vs Scale Out (e.g. Vertical vs Horizontal)

The Case for Hadoop

An Ideal system would include:
Å A highly resilient, cost-effective, distributed file system

Å Parallel processing that takes tasks to the data

Å The ability to run on simple commodity hardware

Å An open source ethos so innovation could happen as quickly as

possible

Hadoop Defined

Hadoop Provides

ÅA distributed filesystem (HDFS) that can store data across

thousands of servers

ÅA means of running work (MapReduce & YARN) across

those machines, running the work near the data

7

http://wiki.apache.org/hadoop/ProjectDescripti

on

HDFS

Key Features

Write Once Read Many

Á Logical filesystemðsits on top of native OS

Å Files split into Blocks

Å Blocks spread across the cluster

8

HDFS

400 MB file to write to the cluster

9

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4 B3

B2B1

400MB

file
File is split into 4 blocks (128MB x 3, 16MB x 1)

HDFS

10

Data Blocks copied to 3 different nodes

Á Fault-Tolerance

ÁMultiple copies provide performance boost

Á Replication Level is configurable

Á Full checksums

Á Rack awareness

HDFS

Data Blocks are copied to three different nodes

11

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

400MB

file

HDFS

Looks just like a conventional filesystemê

12

HDFS

Node Failure is Expected

13

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

X
When a node fails (or is unreachable)é

HDFS

HDFS re-replicates data

14

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

X
Maintains 3-copy protection level

B2

B4

B3

HDFS

How does the cluster know:
ÅWhat to replicate

ÅWhere data is stored?

Á If a block has been corrupted?

Á If a block is over or under-replicated?

Á If a data node has failed or is unreachable?

15

HDFS ðNameNode

16

StoreSales.txt - blocks B1, B2, B3, B4

Promos.csv - blocks B5, B6

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

B5 B6

B6

B6

B5

B5

NameNode

Å Critical High-Performance Node

Å Contains all metadata for data blocks

Å Keeps metadata in-memory

Å Controls re-replication of missing data

HDFS ðStandby NameNode

17

StoreSales.txt - blocks B1, B2, B3, B4

Promos.csv - blocks B5, B6

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

B5 B6

B6

B6

B5

B5

NameNode

Redundant Name Space

Metadata Checkpoints to disk

Standby NameNode

MapReduce ðHadoop 1.0

18

YARN/Tez ðHadoop 2.0

19

YARN/Tez

The Data Operating System
ÅMore ways to process data than just MapReduce - Tez

Å Improved Scalability & cluster Resource Utilization

ÅMixed Workloads ðBatch,

So how do we run óworkô against a Hadoop cluster?
Å Jobs are split into Tasks

Å Tasks are sent to the Data ***
Å Tasks are performed in parallel

20

Hadoop Job Execution

22

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

B5 B6

B6

B6

B5

B5

StoreSales.txt - B1, B2, B3, B4

Promos.csv - B5, B6

NameNode

Client

Job #1

Store Sales

Resource Management

Scheduling

Resource Manager

Node

Manager

NMNM

NM NM

Hadoop Job Execution

23

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

B5 B6

B6

B6

B5

B5

StoreSales.txt - B1, B2, B3, B4

Promos.csv - B5, B6

NameNode

Client

Job #1

Store Sales

Resource Management

Scheduling

Resource Manager

Node

Manager

NMNM

NM NM

Hadoop Job Execution

24

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

B5 B6

B6

B6

B5

B5

StoreSales.txt - B1, B2, B3, B4

Promos.csv - B5, B6

NameNode

Client

Job #1

Store Sales

Resource Management

Scheduling

Resource Manager

Node

Manager

NMNM

NM NM

Container
Container

Container
Container

Container

Container
Container

Container
Container

Container

App

Master

Hadoop Job Execution

25

DataNode 1 DataNode 2 DataNode 3

DataNode 4 DataNode 5

B4

B4 B3

B2 B1

B1

B1 B4B3B3 B2

B2

B5 B6

B6

B6

B5

B5

StoreSales.txt - B1, B2, B3, B4

Promos.csv - B5, B6

NameNode

Client

Job #1

Store Sales

Resource Management

Scheduling

Resource Manager

Node

Manager

NMNM

NM NM

Container
Container

Container
Container

Container

Container
Container

Container
Container

Container

App

Master

Hadoop Job Execution

Tolerant of Task Failures

In fact, Task failures are expected

Speculative Execution

Task Resubmission

27

MapReduce

Original Hadoop Execution Engine

Å MapReduce programs usually written in Java

Å Jobs created on client machine

Framework handles parallelization

Å Jobs run as Directed Acyclic Graphs (DAGs)

Å All data is processed as key value pairs

28

MapReduce
MapReduce breaks a large problem into sub-solutions

Map Process

Map Process

Map Process

Map Process

Data

Data
Data

Data

Data
Data

Data
Data

Data
Data

Data

Data
Data Map Process

Reduce

Process

Reduce

Process

Data

Read & ETL

Shuffle & Sort

Aggregation

Data

Data
Data

Data

Data

Data

Data

Data

29

MapReduce

Map (SQL Analogy: Select ðFrom - Where)

Å Read data one Key-Value Pair at a time

Å Apply computation

Å Emit <key, value> pairs

Reduce (SQL Analogy: Group By - Having - Aggregation - Sort)

Å Read Map Task results

Å Apply computation

Å Emit <key, value> pairs ðusually 1 row/key

30

YARN/Tez

31

BIG Improvements over MapReduce

Mixed Workloads
Å Batch, Interactive, and Real-Time processing

Greater DAG parallelism
Å (no longer successive Maps & Reduce loops)

In-Memory & Caching Optimizations
Å No writes or spill to disk unless necessary

Reduced process overhead (startup costs)

Data remains in-memory

Tez

Hive ðMapReduce Hive ðTez

SELECT a.state , COUNT(*), AVG(c.price)

FROM a

INNER JOIN b ON (a.id = b.id)

INNER JOIN c ON (a.itemId = c.itemId)

GROUP BY a.state

SELECT a.state

JOIN (a, c)
SELECT c.price

SELECT b.id

JOIN(a, b)
GROUP BY a.state

COUNT(*)
AVG(c.price)

M M M

R R

M M

R

M M

R

M M

R

HDFS

HDFS

HDFS

M M M

R R

R

M M

R

R

SELECT a.state ,
c.itemId

JOIN (a, c)

JOIN(a, b)
GROUP BY a.state

COUNT(*)
AVG(c.price)

SELECT b.id

Tez avoids unneeded

writes to HDFS

Hadoop Ecosystem

ODBC Connectivity

Data Movement Hadoop <=> SQL Server/RDBMS

ÅMoves data in & out of HDFS via ODBC/JDBC compatible

data sources

ÅCreates optimized MapReduce jobs

ÅApache manual is excellent

https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html

Ecosystem ðData Ingestion

35

Sqoop

Ecosystem ðData Ingestion

36

Data Flow

Apache NiFi supports powerful and scalable directed

graphs of data routing, transformation, and system

mediation logic.

Import ðFrom SQL Server into HDFS or HCatalog

sqoop import -- connect
" jdbc:sqlserver ://< Servername|IP >:1433;database=< DBName>;username=<UName
>;password=< Passwd˲ ƨ
-- table < TableName>
-- hive - import
-- map- column- hive BinaryBlobFile =binary
-- -- schema Staging

ÅCan read from a table or a query

Ecosystem ðSqoop

37

Export ðfrom HDFS file to SQL Server

sqoop export -- connect
" jdbc:sqlserver ://< Servername|IP >:1433;database=< DBName>" -- username
<Uname> -- password < Passwd>
-- table < TableName>
-- export - dir /< folderpath >/< foldername >
-- input - fields - terminated - by '|'
-- -- schema Staging Ƶ- identity - insert

ÅFile(s) or HCatalog tables are pushed from HDFS to SQL Server

ÅTable must already exist in the target database

ÅDo not use for large tables, inserts row by row

Ecosystem ðSqoop

38

SQL Queries for HDFS data

Query HDFS using HiveQL with Schema on Read ***

ÅLooks and feels like SQL

ÅHCatalog global metadata store

ÅCreates optimized MapReduce jobs or Tez jobs

Ecosystem ðData Access

39

Hive

Ecosystem - Hive

